
Introduction to  
high performance computing:

what, when and how?
Pradeep Reddy Raamana

crossinvalidation.com

1

High Performance Computing

Adam DeConinck
R Systems NA, Inc.

2

Development of models begins at small scale.

Working on your laptop is convenient, simple.

Actual analysis, however, is slow.

3

Development of models begins at small scale.

Working on your laptop is convenient, simple.

Actual analysis, however, is slow.

“Scaling up” typically means a small server or

fast multi-core desktop.

Speedup exists, but for very large models, not

significant.

Single machines don't scale up forever.

4

For the largest models, a different approach is required.

5

High-Performance Computing involves many

distinct computer processors working together on

the same calculation.

Large problems are divided into smaller parts and

distributed among the many computers.

Usually clusters of quasi-independent computers

which are coordinated by a central scheduler.

Raamana

What is [not] HPC?
✓ Simply a multi-user, shared and

smart batch processing system

✓ Improves the scale & size of
processing significantly

✓ With raw power & parallelization

✓ Thanks to rapid advances in
low cost micro-processors,
high-speed networks and
optimized software

✓ Imagine a big bulldozer!

✘ does not write your code!

✘ does not debug your code!

✘ does not speed up your code!

✘ does not think for you,  
or write your paper!

3Raamana

Raamana

When to use HPC?
• When the task is too big (memory) to fit

on your own desktop computer!

• When you have many small tasks with
different parameters!

• same task, many different subjects
or conditions etc.

• same pattern of computing, if not
same task.

• When your jobs ran too long (months!)

• Need > 1 terabyte of disk space

• High-speed data access - really high!

• No downsides in using it in most cases!!

15

> big node on
cluster

Cluster

Raamana

Components of HPC cluster

Login node  
/Scheduler

Terminal
> cmd

Cluster
Parallel file system

submit

jobs

data

data

• Just 3 things!

• Headnode

• Cluster

• Filesystem

4

Raamana

Is HPC a supercomputer?

• No and Yes

• Supercomputers —>  
a single very-super-large task

• HPC —> many small tasks

• by “high”, we typically mean
“large amount” of performance

5

huge
problem

(mountain)

super computer

rock

Raamana

Benefits of HPC cluster
• Cost-effective

• Much cheaper than a
super-computer with the
same amount of computing
power!

• When the supercomputer
crashes, everything
crashes!

• When a single/few nodes in
HPC fail, cluster continues
to function.

• Highly scalable

• Multi-user shared
environment: not everyone
needs all the computing
power all the time.

• higher utilization: can
accommodate variety of
workloads (#CPUs, memory
etc), at the same time.

• Can be expanded or
shrunk, as needed.

6

Raamana

HPC usage is growing

8© compute canada, tech briefing, 2016.

Raamana

When to avoid HPC?
• When interaction is a big part!

• When visualization is a big part!

• When you are still “improving” algorithm

• Debugging, profiling and optimizing code

• BUT, sometimes you need to deploy on
big nodes to test them. Then its necessary.

• PS: interaction and visualization are both
possible - just need more effort to setup.

17

> interact

still waiting …

> visualize
display missing..

error!

Raamana

total time

develop

reliability

ease of use ease of use develop

reliability total time

Should I use HPC?

16

HPC
laptop

Over full project timeline

publish, revisions!!not just till first result

Raamana

• Self-explanatory!

• process a batch of jobs, in sequence!

• non-interactive, to reduce idle time.

• let’s face it: humans are slow!!

• Reduces startup & shutdown times,
when run separately.

• Efficient use of resources (run when
systems are idle)

Batch processing

2

Raamana

Scheduler
• Allocates jobs to nodes (i.e. time on resources available)

• Applies priorities to jobs, according to policies and usage

• Enforces limits on usage (restricts jobs to its spec)

• Coordinates with the resource manager (accounting etc)

• Manages different queues within a cluster

• customized with different limits on memory, CPU speed and
number of parallel tasks etc.

• Manages dependencies (different “steps” within the same job)!

11

Raamana

Terminology

13© SchedMD, SLURM

Raamana

File-system
• Major roles:

• reduce latency in read/write

• perform regular backup

• Enable concurrent access

• to all nodes

• to all users

• Amazing engineering behind!

14

/home

/scratch

/work

Raamana

Types of schedulers

18

SGE Torque/PBS SLURM

Variables Easy Hard Easier

Features Reasonable Reasonable Many

Support Low Low Well-supported

Administration Not hard Hard Easy

Scalability Medium Low High  
(millions of jobs)

Popularity Okay Not very Highly popular

*Raamana’s personal opinion

Raamana

Job Priority

19

Factor Impact

First-come first-serve jobs waiting longer get priority
Size of resources requested smaller get priority, typically

“whole node” jobs are preferred (over partial use)
Fair-share groups/users with lesser usage get priority
Resource allocation users or groups with prior allocations get higher

priority. Must be set-up in advance.

*Terms and conditions apply e.g. dependences, availability of resources, type
of queue requested etc

https://docs.computecanada.ca/wiki/Job_scheduling_policies

Raamana

Resource specification

20

Resource SLURM SGE
number of nodes -N [min[-max]] N/A

number of CPUs -n [count] -pe [PE] [count]

memory (RAM) --mem [size[units]] -l mem_free=[size[units]]

total time (wall clock limit) -t [days-hh:mm:ss] OR -t [min] -l h_rt=[seconds]

export user environment --export=[ALL | NONE | variables] -V

naming a job (important) --job-name=[name] -N [name]

output log (stdout) -o [file_name] -o [file_name]

error log (stderr) -e [file_name] -e [file_name]

join stdout and stderr by default, unless -e specified -j yes

queue / partition -p [queue] -q [queue]

script directive (inside script) #SBATCH #$

job notification via email --mail-type=[events] -m abe

email address for notifications --mail-user=[address] -M [address]

Useful glossary:

https://www.computecanada.ca/research-portal/accessing-resources/glossary/

Raamana

Node specification

21

Resource SLURM

restrict to particular nodes --nodelist=intel[1-5]

exclude certain nodes --exclude=amd[6-9]

based on features (tags) --constraint=“intel&gpu”

to a specific partition or queue --partition intel_gpu

based on number of cores/threads --extra-node-info=<sockets[:cores[:threads]]>

type of computation --hint=[compute_bound,memory_bound,multithread]

contiguous --contiguous

CPU frequency --cpu-freq=[Performance,Conservative,PowerSave]

Useful glossary:

https://www.computecanada.ca/research-portal/accessing-resources/glossary/

Raamana

#!/bin/bash
#SBATCH -p general # which partition/queue
#SBATCH -N 1 # number of nodes
#SBATCH -n 1 # number of cores
#SBATCH --mem=4G # total memory
#SBATCH -t 0-2:00 # time (D-HH:MM)
#SBATCH -o my_output.txt

command to invoke your script
python /home/quark/script.py
R CMD BATCH stats.R
matlab -nodesktop -r matrix.m

Making a job from a script

22

> sbatch -n 1 --mem=4G -t 2:00 -o my_output.txt
python /home/quark/script.py

Recommended

Raamana

Invoking script from shell

23

Language /
environment Shell command

shell script bash script.sh

python python script.py

matlab matlab -nodesktop -r script.m

R R CMD BATCH script.R

Raamana

Being precise and smaller is wiser!
(backfill policy)

24

CPUs

32

16

8

6

4

2

1

with backfill,

you can look ahead, fill
unused gaps with jobs

waiting in queue.

running job!

Tail of Queue  
jobs wait till resources free up!

Head of queue  
jobs to the left get executed

without backfill, queue or
priority order would be strict.

Cluster under-utilized!

time

*backfill might not always be enabled. Assumes users specified resources!

hence, an army of
small jobs is better
than few big jobs!*

otherwise unused CPUs

Raamana

Splitting your workflow

26

• Some tasks are
highly parallel

• painting
different walls

• Some tasks have
to wait for others

• Installing roof,
needs all walls
built first.

Raamana

Slicing Total Processing

27

Task parallelismData parallelism

you can do both, although with varying returns!

Note: these are mostly embarrassingly parallel!

Raamana

Where to speed up?

28

green task (parallelizable) red task (sequential, can NOT be parallelized)

Fully Sequential

Make B 5x faster

Make A 5x faster

Time in minutes
0 25 50 75 100

whole task

Raamana

Limits on speed up

29© wikipedia

5

High-Performance Computing involves many

distinct computer processors working together on

the same calculation.

Large problems are divided into smaller parts and

distributed among the many computers.

Usually clusters of quasi-independent computers

which are coordinated by a central scheduler.

10

Applications must be written specifically to

take advantage of distributed

computing.

 Explicitly split your problem into smaller

“chunks”

 “Message passing” between processes

 Entire computation can be slowed by one

or two slow chunks

 Exception: “embarrassingly parallel”

problems

 Easy-to-split, independent chunks of

computation

 Thankfully, many useful models fall under

this heading. (e.g. stochastic models)
“Embarrassingly parallel” =

No inter-process communication

Raamana

Checklist: before you submit
• Test and debug your code locally

• starting with each of the small parts of the
pipeline

• whether they are integrated well

• reduce redundancy, choosing right output
formats etc

• sloppy testing and debugging could cost
you a lot, later on!!

• Test your environment

• Run the job locally on the headnode or
login node

• If not, you can request an interactive job

• Do I have enough disk space?

• Chalk out job requirements in speed, walltime,
RAM, number of jobs etc

• to reduce the total processing time (at the
level of dataset and experiment)

• You many need to select appropriate
queue or partition to match your needs
and specifications (otherwise you might
wait in line forever

• Decide on whether to insert checkpoint logic
and code

• Decide on whether to insert Profiling code
(measure its effective speed in different parts
of pipeline)

• Decide on whether to retain intermediate or
scratch outputs?

36

Raamana

Checklist: before you submit
• Always try to specify resources!

• defaults are not necessarily the best
for your need!

• job gets scheduled quickly, choosing
right queue/specs.

• reduces the trial and error to get to
the right nodes w/ resources

• reduces wastage - don’t take up 8
CPUs and 32Gb to print(“Hello,
World!”)

• “Know your job” well (profiling!)

• Save the job specifications to a file (do
not rely on shell history)

• Estimate requirements precisely, but be
conservative in requesting - add 10-20%

• If your matrix needs 2.5GB, specify
4GB for job.

• Remember OS on the nodes takes
up some RAM - so if the node
physically has 32GB, it needs a
2-3GB to run and stay alive. Only
jobs requiring less than 30GB will be
scheduled to it. Jobs requiring
exactly 32GB will be sent to nodes
with more than RAM (64 or 128GB)

37

Raamana

Checklist: profile your job

• Many tools are available in Linux to “profile”
the memory usage and time usage for different
parts of your program.

• top / htop

• free / vmstat

• time

• Plugins to IDEs for your language

• Explicit profiling is typically not necessary!

• you know your job during development.

• Check the file sizes created during “trial” runs

• Keep only what is necessary, after testing!

• You don’t need to specify disk space, but
need to ensure you won’t create more files
exceeding your quota (aggregate over all
jobs)

• tools: quota, du or df -h

• If you are unable to profile on your desktop,

• request an interactive job!

• Once obtained, acts like your desktop!

• Need to think about whether you need a
display, when you run jobs!

38

Raamana

• Regularly check on job status

• because jobs fail! Many reasons! It
sucks. It hurts. No matter how
well you tested your code!

• Some factors (like network, file
system and weather) are not in
your control.

• Better to accept failures,  
and reduce the time to resubmit
them.

• Hence checkpointing is important!

• so you reuse what was finished
already before failure!

• You may need to write scripts to get
an accurate estimate of status of
processing!

• as your pipeline can be
complicated

• rely on files written to disk, than
text output in a log

• unless you designed it that way

39

Checklist: during execution

Raamana

• Check various things!!

• Check file sizes (file being
there doesn’t mean it has
data)

• Visualize them (data present
doesn’t mean its accurate)

• Sweep across all jobs!

• Check disk usage.

• Track usage:

• memory, walltime, disk I/O etc.

• to optimize job specs next time

• as it’s never a one time thing!

• Again, scripts can help

• automating this process

• mad shell skills also help.

40

Checklist: after execution

Raamana

Checklist

41

Before Test and profile code,
locally!

Run a test job to test
environment & config Chalk out requirements

During Look for any failures! Monitor usage! Resubmit, correcting
any simple mistakes

After Check logs & outputs Assume the worst! Visualize and verify,  
do not assume!

Do Automate checks
when possible!

Identify areas for
optimization (repkg)

Regular cleanups
(shared file systems)

Avoid Don’t create too
many small files!

Avoid ASCII (text)  
format for large files

Relative paths  
(use absolute paths)

Don’t use MS Word
(hidden characters):
use text editor or vi

Raamana

Data transfer tools

43

Task Recommended Alternatives

download wget URL browser and scp

synchronize rsync -av /src server:/dest
scp (batch, simplest)  
sftp (interactive)
bbcp (parallel; large sizes)

reduce size tar -cvf (create / zip)
tar -xvf (extract/unzip)

zip
unzip

software FileZilla(desktop to cluster)
Globus (between clusters)

WinSCP (windows)
FireFTP (cross-platform)
Transmit, Fugu (Mac)

https://docs.computecanada.ca/wiki/Globus

When in doubt, don’t delete data. When in doubt, email the admins!

Raamana

Data management plan!
• Calculate size of data you’ll produce from test runs.

• What do you need to “keep”, and how long?

• When is data “final” and needs to be backed up?

• What is scratch and deletable, and what is not?

• Is the “intermediate” data easy & quick to regenerate?

• If so, should you even store it?

44

Raamana

Should I build a pipeline?

45

• Can few parts of my project be automated? Together?

• Do I repeat this processing/analysis? More than twice?

• Even if they are repeated in a different manner,  
can I capture the variations in logic?

• Are there delays due to human involvement?

• Is it difficult to redo this on a different dataset or by
others?

• Are there concerns of reproducibility in my analysis?

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

My thesis: “Most things can be automated!”

Yes 4/6?

Raamana

Building pipelines
• We usually need to stitch together a diverse array

of tools (AFNI, FSL, Python, R etc) to achieve a
larger goal (build a pipeline)

• They are often written in different
programming languages (Matlab, C++,
Python, R etc)

• Mostly compiled, and no APIs

• To reduce your pain, you can use bash or
Python to develop a pipeline.

• If it’s neuroimaging-specific, check nipy also

• So, learning a bit of bash/Python really helps!

• be warned, bash is not super easy, but very
helpful for relatively straightforward pipelines!

46

no heavy logic? Use:

When in doubt, use:

Raamana

HPC Skills
• Learning Linux goes a long

way.

• Most HPC clusters are in
Linux!

• It is reliable and free.

• Great to build pipelines

• Understanding of scheduling

• Command-line skills

• batch processing is king!!

• human interaction is slow!

• Scripting in bash/python

• to stitch together routine
or repetitive tasks into a
pipeline!

47

22

Recent developments: GPUs

23

Graphics processing units

 CPU: complex, general-purpose processor

 GPU: highly-specialized parallel processor, optimized for performing operations for

common graphics routines

 Highly specialized → many more “cores” for same cost and space

 Intel Core i7: 4 cores @ 3.4 GHz: $300 = $75/core

 NVIDIA Tesla M2070: 448 cores @ 575 MHz: $4500 = $10/core

 Also higher bandwidth: 100+ GB/s for GPU vs 10-30 GB/s for CPU

 Same operations can be adapted for non-graphics applications: “GPGPU”

Image from http://blogs.nvidia.com/2009/12/whats-the-difference-between-a-cpu-and-a-gpu/

13

External resources

 One solution to handling complexity: outsource it!

 Historical HPC facilities: universities, national labs

 Often have the most absolute compute capacity, and will sell

excess capacity

 Competition with academic projects, typically do not include

SLA or high-level support

 Dedicated commercial HPC facilities providing “on-demand”

compute power.

14

External HPC

 Outsource HPC sysadmin

 No hardware investment

 Pay-as-you-go

 Easy to migrate to new tech

Internal HPC

 Requires in-house expertise

 Major investment in hardware

 Possible idle time

 Upgrades require new hardware

15

External HPC

 No guaranteed access

 Security arrangements complex

 Limited control of configuration

 Some licensing complex

 Outsource HPC sysadmin

 No hardware investment

 Pay-as-you-go

 Easy to migrate to new tech

Internal HPC

 No external contention

 All internal—easy security

 Full control over configuration

 Simpler licensing control

 Requires in-house expertise

 Major investment in hardware

 Possible idle time

 Upgrades require new hardware

16

“The Cloud”
 “Cloud computing”: virtual machines, dynamic allocation of resources in

an external resource

 Lower performance (virtualization), higher flexibility

 Usually no contracts necessary: pay with your credit card, get 16 nodes

 Often have to do all your own sysadmin

 Low support, high control

Raamana

Submit your questions now!

49

I will batch process them in queue.

Raamana

Any questions before we move
on to a hands-on demo?

50

